Sin duda k-means es uno de los algoritmos de aprendizaje automático no supervisado más popular. El objetivo de k-means es simple: agrupa puntos de datos similares con el objetivo de descubrir patrones subyacentes. Para lograr este objetivo, k-means busca un número fijo (k) de agrupamientos (clústers) en el conjunto de datos . 1. Funcionamiento básico […]
Etiqueta: Elbow
Parametrización automática de DBSCAN en R a partir de la curva elbow
En el anterior post titulado Ejemplo de uso de DBSCAN en Python para eliminación de outliers se vio cómo ejecutar un algoritmo DBSCAN para detección de outliers en Python; sus parámetros se eligieron de forma más o menos visual a partir de la nube de puntos y de la curva elbow. El problema que esto […]
caja costarricense citas en linea
http://exponentis.es/cuando-una-mujer-esta-coqueteando
Dentro de los algoritmos de clustering de aprendizaje no supervisado, uno de los más interesantes -y quizás no tan conocido- es DBSCAN, un algoritmo de agrupamiento basado en la densidad, que modela los clústers como cúmulos de alta densidad de puntos. Por lo cual, si un punto pertenece o no a un clúster, debe estar […]